You are here : Home > The Lab > Copper homeostasis in chloroplast: Comparative study of two transporters belonging to the PIB-ATPase family

Émeline Sautron

Copper homeostasis in chloroplast: Comparative study of two transporters belonging to the PIB-ATPase family

Published on 14 October 2015

Thesis presented October 14, 2015

Copper is an essential transition metal for living organisms. In the plant Arabidopsis thaliana, half the copper content is localized in the chloroplast. This organelle specific of plant cells, consists of an envelope delimiting the stroma, an aqueous compartment within which there is a complex membrane system, the thylakoids. In chloroplasts of Arabidopsis, copper is the cofactor of two essential proteins: the superoxide dismutase Cu / Zn, involved in defense against reactive oxygen species in the stroma and plastocyanin, a protein of the thylakoid lumen involved in the chain transfer photosynthetic electron. Reverse genetics studies have demonstrated that copper transport in plastocyanin involved two membrane proteins belonging to the family of PIB-1-ATPases: HMA6, located in the envelope and HMA8, localized in the thylakoid membranes. A functional in vitro study showed that HMA6 was a monovalent high affinity copper transporter showing the general characteristics of P-ATPases. To compare the enzymatic properties of these two ATPases and better understand their respective role in copper homeostasis in the chloroplast, we in vitro determined the enzymatic properties of HMA8.
The strategy employed for the characterization of HMA8 was similar to that used for the characterization of HMA6. Initially, the ion selectivity of HMA8 was evaluated using phenotypic tests in the yeast Saccharomyces cerevisiae. The enzymatic properties of HMA8 were then determined in vitro after expression in the bacterium Lactoccocus lactis, by phosphorylation experiments by ATP. This analysis demonstrated that HMA8 had a stronger apparent affinity for copper but a slower catalytic activity than HMA6. The analysis of three-dimensional models of HMA6 and HMA8 showed that these differences could be explained by differences in the electrostatic potential at the cavity where the metal is released and/or by the nature of the partners interacting with these ATPases. These differences might explain the distinct functions of the two carriers in the chloroplast: HMA6 would regulate the copper concentration in the stroma by interacting with various target proteins (including copper chaperone), while HMA8 would have a more specific role for the distribution of copper plastocyanin.
To better understand the mechanism of copper release by HMA6 and HMA8, we conducted a functional study of mutants of the region connecting the first two transmembrane helices (TMA and TMB). In this study, we specifically targeted cysteines and histidines because of their chemical properties that make them very strong metal ligands. The mutants of interest were selected by phenotypic screening in yeast and then expressed in the bacterium L. lactis. The in vitro biochemical characterization of their enzymatic properties was carried out by phosphorylation tests by ATP and Pi. This study allowed us to identify two residues, one cysteine and one histidine, involved the release of copper and to propose a metal path model in extracytoplasmic part of the transport site of HMA6.

Chloroplast, membrane protein, ATPases-PIB, copper, Arabidopsis thaliana, Saccharomyces cerevisiae, Lactoccocus lactis