You are here : Home > The Lab > Bio-inspired protein nanowire: Electrical conductivity and use as redox mediator for enzyme wiring

Lucie Altamura

Bio-inspired protein nanowire: Electrical conductivity and use as redox mediator for enzyme wiring

Published on 27 January 2015



Thesis presented 27 January 2015

Abstract:
The discovery of bacterial nanowires able to transport electrons on long range within biofilms and transfer them to electrodes is very promising for the development of bioelectronics and bio-electrochemical interfaces. However, their assembling process, their molecular composition and the electron transport mechanism are not fully understood yet. We took inspiration from bacterial nanowires to design conductive protein nanowires. We fused the sequence of a rubredoxin, an electron transfer iron-sulfur protein, to the sequence of HET-s(218​-289), a prion domain that forms amyloid fibril by self-assembling under well-defined conditions. The resulting chimeric protein forms amyloid fibrils and displays redox proteins organized on the surface as shown by microscopy techniques and UV-Vis and EPR spectroscopy. Electron transfer mechanisms were studied in “dry state” current-voltage (I-V ) measurements and as hydrated film by electrochemistry. Dry state measurements allowed to evidence several conduction pathways with a possible role of aromatic residues in the conduction. Electrochemistry revealed electron transport by hopping between adjacent redox centers. This property allowed the use of our protein as mediator between a multicopper enzyme (laccase) and an electrode for electrocatalytic reduction of oxygen. These protein nanowires are interesting structures for the study of charge transport mechanisms in biological systems but are also very promising for the design of biosensors and enzymatic biofuel cells.

Keywords:
Nanowires, electronic, proteins, self-assembly, biosensor.