You are here : Home > The lab > New heterogeneous biocatalysts for oxidation reactions: Crystals of artificial metalloenzymes

Sarah Lopez

New heterogeneous biocatalysts for oxidation reactions: Crystals of artificial metalloenzymes

Published on 12 October 2018
Thesis presented October 12, 2018

Abstract:
Since the industrial revolution, chemistry has continually thriven by developing new efficient processes at the expense of the environment. As an example, oxidation reactions are performed under harsh conditions with the use of toxic oxidants. With the emergence of green chemistry, catalytic processes using physiological metals and soft oxidants are privileged. Combining the advantages of biocatalysis and homogeneous catalysis, the design of novel bioinspired catalysts, consisting on the synthesis of artificial enzymes has recently emerged. These hybrids are composed of an inorganic complex, driving the reactivity of the enzyme, inserted into a protein, which drives the reaction selectivity. The thesis described new developments in original artificial metalloenzymes, based on the use of the NikA protein and Fe or Ru catalysts. First, a new hybrid has been developed by anchoring the Ru-bpza complex to NikA to catalyze alkene hydroxychloration with hypervalent iodine. Although excellent catalytic efficiencies were obtained, the stability improvement remains a major challenge for the industrial use of these catalytic processes, especially when oxidation chemistry is concerned. One possible strategy is based on the development of heterogeneous catalysis, by using a crystal/solution version of the artificial metalloenzymes thank to the cross-linked enzyme crystals (CLEC) technology. On the one hand, this technology allows to increase the stability and the recyclability of the catalysts. On the other hand, catalysis can be performed under a various reactions conditions (organic solvent, temperature, pH). Three reactivities have been developed with NikA/FeL-CLEC catalysts: (i) thioether sulfoxidation with NaOCl, (ii) alkene hydroxychloration with Oxone® and chloride source and (iii) oxidative cleavage of alkenes by O2 activation. To go further, new reactivities in cascade reactions have been explored combining either NikA-based CLEC developed, or different homogenous catalysts.

Keywords:
Crystals of artificial enzymes, oxidation reactions, heterogeneous catalysis, cross-linked enzymes, CLEC technology

Download this thesis.