Thèse soutenue le 28 juin 2023 pour obtenir le grade de docteur de la Communauté Université Grenoble Alpes - Spécialité : Biologie cellulaire
Résumé :
Le développement des techniques de microscopie électronique volumique a révolutionné l’imagerie tissulaire et cellulaire. En particulier, la technique FIB-SEM (pour
focused ion beam scanning electron microscopy) permet d’élucider l’ultrastructure tridimensionnelle de structures biologiques à une échelle nanométrique. Dans le cadre de ma thèse, deux études indépendantes ont été réalisées en utilisant l’approche FIB-SEM.
Dans une première étude, j’ai travaillé sur les nanoparticules d’argent (NP-Ag) qui sont utilisées, pour leur fonction biocide, dans des produits du quotidien (emballages alimentaires, vêtements anti-odeur…) ainsi que dans des dispositifs médicaux (pansements, cathéters...). Les ions Ag(I) relargués de ces NP sont responsables de l’effet biocide mais sont également toxiques pour les cellules de mammifères. Afin de mimer le devenir des NP-Ag dans l’organisme avec un focus sur leurs transformations et l’excrétion d’espèces d’argent du foie, nous avons utilisé un modèle 3D de sphéroïde d’hépatocytes qui mime le foie et permet d’étudier l’excrétion biliaire. Ces sphéroïdes ont été exposés à un sel d’Ag et à deux types de NP-Ag pour mimer, respectivement, le cas d’exposition orale et parentérale qui sont les deux principales voies d’exposition humaine à ces NP. La combinaison de la technique FIB-SEM avec d’autres techniques d’imagerie élémentaire, d’analyse chimique et de spéciation nous a permis d’étudier les transformations des différentes espèces d’Ag, de visualiser leurs distributions à une échelle subcellulaire, de mettre en évidence le stockage de l’excès d’argent dans des vacuoles et l’excrétion biliaire d’ions Ag(I) et d’analyser l’impact des espèces d’argent sur l’ultrastructure des hépatocytes, en particulier sur le réseau mitochondrial. Ces résultats soulignent la pertinence de notre modèle hépatique pour étudier les transformations de nanomatériaux dans le foie au-delà des NP-Ag.
Dans une deuxième étude, j’ai travaillé sur les cellules endothéliales sinusoïdales (LSEC) qui tapissent la paroi des capillaires hépatiques ou sinusoïdes. Les LSEC sont des cellules endothéliales hautement spécialisées qui présentent des fenêtres permettant des échanges bidirectionnels entre le sang sinusoïdal et les hépatocytes. Les études décrivant la structure des LSEC sont majoritairement des études en 2D qui ne permettent pas de complètement élucider l’architecture
in vivo de ces cellules et l’organisation spatiale de leurs fenêtres. La technique FIB-SEM a été utilisée pour imager des échantillons de foie de souris en se focalisant sur la porosité des sinusoïdes. Un protocole de préparation des échantillons de foie qui préserve bien l’ultrastructure des sinusoïdes a été mis au point. Ensuite, j’ai développé une méthode de segmentation qui a permis de reconstruire en 3D et à haute résolution les LSEC. L’étude de l’architecture 3D des LSEC et la détermination des diamètres de leurs fenêtres ouvrent de nouvelles perspectives pour approfondir la compréhension de la corrélation entre la fonction et la structure de ces cellules dans des conditions physiologiques et pathologiques. Notre approche pourrait également aider à modéliser le transport des différentes substances ou médicaments entre le sang et les hépatocytes et pourrait être utilisée pour vérifier la porosité des sinusoïdes de patients dans le cadre d’applications en médecine personnalisée.
Jury :
Président : Laurent Charlet
Rapporteur : Jean-Marc Verbavatz
Rapporteure : Claire Wilhelm
Examinatrice : Martine Daujat
Directeur de thèse : Aurélien Deniaud
Co-encadrante de thèse : Mireille Chevallet
Co-encadrant de thèse : Pierre-Henri Jouneau
Mots clés :
Microscopie électronique volumique, FIB-SEM, foie, culture cellulaire 3D, nanoparticules d’argent, LSEC, fenêtres