You are here : Home > The lab > Elucidation of the role of new actors of the Q8 biosynthesis in E. coli and characterization of the protein complex responsible of the Q8 biosynthesis

Mahmoud Hajj-Chehade

Elucidation of the role of new actors of the Q8 biosynthesis in E. coli and characterization of the protein complex responsible of the Q8 biosynthesis

Published on 26 October 2015


Thesis presented 26 October​ 2015

Abstract:
Ubiquinone (Q) is a lipophilic compound that plays an important role in electron and proton transport in the respiratory chains of Escherichia coli. Besides this important role in energy production, Q also functions as a membrane soluble antioxidant. The biosynthesis of Q8 requires eight reactions and involves at least nine proteins (UbiA-UbiH and UbiX) in Escherichia coli. Three of these reactions are hydroxylations resulting in the introduction of a hydroxyl group on carbon atoms at position 1, 5 and 6 of the aromatic ring. The C1 and C6 hydroxylation are well characterized whereas the C5 hydroxylation has been proposed to involve UbiB, a protein kinase without any sequence homology with monooxygenase.
In this work, by genetic and biochemical methods we provide evidence that VisC which we renamed UbiI, displays sequence homology with monooxygenases and catalyzes the C5 hydroxylation, not UbiB. We have identified two new genes, yqiC and yigP (renammed UbiJ and UbiK) which are required only for Q8 biosynthesis in aerobic conditions. The exact role of the corresponding proteins, renamed UbiJ and UbiK, remains unknown. These proteins are able to interact with other Ubi proteins to be able to produce Q supporting the protein complex hypothesis. Our progress on the characterization of an Ubi-complex regrouping several Ubi proteins suggest that UbiJ and UbiK may fulfill functions related to the Ubi-complex stability. Mutants affected in hydroxylation steps are deficient for Q8 in aerobic conditions but recover a wild type Q8 content when grown in anaerobic conditions. This intriguing observation supports the existence of an alternative hydroxylation system independent from dioxygen which has not been characterized so far. By phylogenetic studies, we have identified a new gene in which the deletion affect the biosynthesis of Q only in anaerobic conditions suggesting a reorganization of Q biosynthesis in these two conditions.
Our results has improved our knowledge of the prokaryotic Q biosynthetic pathway through the discovery of new genes involved in this process and through the identification of the molecular function of some proteins.


Keywords:
Protein complex, hydroxylase, coenzyme Q

Download this thesis.