You are here : Home > The lab > Modification of macromolecules by radical insertion. Study of the methylthiotransferase RimO and the 4-demethylwyosine synthase TYW1 both belonging to the Radical-SAM superfamily

Thibault Molle

Modification of macromolecules by radical insertion. Study of the methylthiotransferase RimO and the 4-demethylwyosine synthase TYW1 both belonging to the Radical-SAM superfamily

Published on 12 December 2014
​Thesis presented December​ 12, 2014

Abstract :
Over the last twenty years, the insertion reactions of atoms or molecular fragments into poorly reactive C-H bonds have been actively investigated but the details of their mechanisms remain largely unknown. Enzymes belonging to the "Radical-SAM" superfamily catalyze the activation of their substrate using a [4Fe-4S] in conjunction with the co-substrate S-adenosylmethionine (SAM). Radical insertion enzymes are a subgroup of this family and contain a second iron-sulfur cluster involved in the activation of the second substrate allowing the insertion reaction by radical coupling to take place. The work presented in this thesis is focusing on two enzymes, the first one, RimO is a methylthiotransferase (MTTase) that catalyzes the insertion of a thiomethyl group on the beta position of D89 residue of the ribosomal protein S12 (ß-ms-D89-S12). The second one, TYW1, or 4-demethylwyosine synthase, catalyzes the insertion of the acetyl moiety of pyruvate into a C-H bond of a N-methyl group of a guanine derivative in some eukaryotic and archeal tRNAs. This​ insertion reaction leads to the formation of a tricyclic ring and through several steps to wybutosine (yW), a hypermodified nucleotide important for the translational fidelity of the cell. In this work we demonstrate that these radical inserting enzymes utilize the two iron-sulfur clusters to cooperate and that they control the different partners of the reaction by original redox mechanisms.


Keywords:
Sulfur, Iron, Radical chemistry, Iron-sulfur cluster, post-transcriptional modification, post-translational modification

Download this thesis.