You are here : Home > The lab > Activation of small molecules by bio-inspired complexes containing metal-thiol bond

Déborah Brazzolotto

Activation of small molecules by bio-inspired complexes containing metal-thiol bond

Published on 5 October 2016

Thesis presented on October 05, 2016

The aim of my thesis was to improve the knowledge on the role of metal-thiolate bonds in metalloenzymes using a bio-inspired approach by investigating the structural, electronic and/or magnetic properties of chemical models as well as their reactivity.
In this context, we report the synthesis and analysis of two heterodinuclear NiFe complexes, structural and functional models of the active site of [NiFe] hydrogenase, which produce H2 electrocatalytically at high rates. Intermediate species have been generated and characterized by different spectroscopic techniques. The reversible inhibition of the catalytic activity by CO has been also investigated and discussed.
We also describe the synthesis and characterization of a new manganese-thiolate complex, bearing a pendant thiol group bound (in its -SH form) to one MnII ion. This complex is capable of activating dioxygen, and is an active catalyst for selective 2-electron O2 reduction in the presence of a one-electron reducing agent and a proton source. The O2 activation and reduction pathways have been studied under both stoichiometric and catalytic conditions. Several high valent Mn complexes resulting from O2 activation have been isolated and characterized and their reactivity toward hydrogen or oxygen atom transfer (HAT or OAT, respectively) has been evaluated.
A series of pentacoordinated metal-halide complexes MIIIX (M = Co and Mn ; X = Cl, Br, I) has been investigated with the aim of understanding the role of the metal ion in disulphide/thiolate interconversion. While such conversion is reversible in the presence of both Co and Mn, the process becomes much faster and quantitative for the Co–based system with respect to the Mn one. Besides, this work has allowed improving the understanding of how the electronic and redox properties of the metal centers should be fine-tuned to permit a disulphide/thiolate (inter)conversion, mediated by metal ions, to occur efficiently.
Finally, the magnetic properties of the series of mononuclear CoIIIX complexes have been investigated. They display a rare intermediate S = 1 spin state and their magnetic anisotropy is sensitive to the nature of the halide in an unexpected way: the largest D-value has been measured for the chloride compound and the smallest for the iodide one. This behavior has been rationalized through a theoretical study.

Small molecules, Bio-inspired complexes, Metal-thiol bond

Download this thesis.